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A number of processes in which air is entrained in a flow appear to involve the
formation of a thin air film between a rclatively fast liquid stream and a region of
slow recirculation. Eventually, the film breaks into bubbles. This study addresses a
possible mechanism causing this process. The linear stability of a vertical film of a
viscous gas bounded by liquid in uniform motion on one side, and by liquid at rest
on the other side, is studied. Instabilities are found that, depending on the parameter
values of the undisturbed flow, are controlled by two basic mechanisms. One is due
to the velocity jump across the film and can be related to the usual Kelvin—-Helmholtz
instability. The second one is controlled by the viscosity jump across the air-liquid
interfaces. The relation between the remainder of the discrete spectrum and the
spectrum of other parallel shear flows bounded by solid or free surfaces is also
discussed.

1. Introduction

The entrainment of air in a flow is an important process very frequently
encountered. The ecological balance of water bodies, from small lakes to entire
oceans, is critically dependent on the amount of dissolved oxygen. Aeration is a
standard technique of water treatment. Furthermore, the formation and detachment
of bubbles is an inherently noisy process to which much of the oceanic ambient noise
over a large frequency range from hundreds of Hz to many tens of kHz can be
ascribed. In spite of this widespread occurrence, not much seems to be known about
the basic mechanisms by which entrainment takes place. In a paper devoted to air
entrainment in a wave breaking in the spilling mode, Longuet-Higgins & Turner
(1974) mention the ‘over-running of air by the advancing front’ of water and the
‘self-aeration’ of thin, highly turbulent flows which develops when the turbulent
boundary layer on the bottom reaches the surface. While certainly correct and
adequate for the purposes of their study, these statements are rather vague as to the
precise nature of the process. A literature search has not produced much more
detailed information than this. In the present paper we wish to investigate
theoretically a possible mechanism by which air can be entrained in flows. Although
not the only one, this mechanism appears to be of sufficiently widespread occurrence
to warrant its investigation.

A consideration of several examples of entraining flows suggests that a possible
mechanism involves the development and instability of a thin air film at the
boundary between two liquid currents. The clearest example of this process is offered
by a jet falling into a liquid pool. In a high-viscosity liquid an air film surrounding
the jet can be clearly discerned for several diameters below the free surface (Lin &
Donnelly 1966). The film develops a wavy structure, the amplitude of which
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increases with depth, until it breaks up into bubbles. In a low-viscosity liquid such
as water the film is more unstable and therefore extends for a shorter distance, but
a similar process takes place (figure 1, courtesy of Professor J. Duncan). (In a case
such as this one surface waves on the falling jet, due e.g. to turbulence, may also
develop. Since the air film is very thin, when these waves reach the surface of the
receiving liquid they may close and break off the air film. A similar process may occur
in the case of air entrainment by a wave breaking in a plunging mode or by large
splashes.)

A detailed flow visualization of air entrainment in a small-scale spilling breaking
wave (Banner & Cato 1988), also shows an air film separating the liquid at the face
of the wave from the toppling mass forming the recirculating ‘toe’ of the breaker. A
high-speed movie taken from above shows the film to become unstable and to give
rise to bubbles that remain entrained in the recirculating liquid mass falling down the
face of the wave. This mechanism is possibly similar to the trapping of air occurring
in the roller zone of a hydraulic jump (Rajaratnam 1967).

As a third example one may cite the formation of an air film in the form of a ‘skirt’
at the rim of a gas bubble rising in a liquid (Guthrie & Bradshaw 1969; Hnat &
Buckmaster 1976). This film separates the incoming liquid stream from the
recirculating flow in the bubble’s wake. If the viscosity of the liquid is high, the skirt
is well developed and stable. Its thickness has been measured (Guthrie & Bradshaw
1969) and has been found to be of several tens of pm. A similarly stable skirt
accompanying spherical-cap bubbles in water is not seen, but even a casual
observation shows that small gas bubbles are entrained in the wake of a large
spherical-cap bubble, and it is conceivable that they are due, at least in part, to the
rapid formation and unstable breakup of a short skirt similar to that found in the
high-viscosity case.

In all the above examples the gas film appears at the boundary between a
relatively fast liquid stream and a slower flow, typically of a recirculating nature if
viewed in a suitable frame. A rather steep velocity change therefore occurs across the
thin air film, and one may suspect that the basic mechanism that gives rise to the
standard Kelvin—Helmholtz instability could also provide an explanation for the
breakup of the film. This was our expectation at the beginning of the study. As it
turned out, we have indeed found an instability that can be related to the
Kelvin-Helmholtz one. However, this mechanism may be much less important than
the instability associated with the jump in viscosity at the interfaces. The possibility
of such an instability was first pointed out in the long-wavelength approximation by
Yih (1967), who considered plane Couette-Poiseuille flow of two superposed fluid
layers between horizontal walls. More recently, Hooper & Boyd (1983, 1987)
extended that work to arbitrary wavelengths for the Couette case, and Hinch (1984)
proposed a physical explanation of the underlying mechanism. Further extensions
have been provided by Renardy (1987), who studied a three-layer vertical Poiseuille
flow bounded by solid surfaces, and by Joseph, Renardy & Renardy (1984) and
Renardy & Joseph (1985), for configurations with cylindrical symmetry. Since none
of these analyses is adaptable to our case, we also develop an explicit treatment of
this instability suitable for our situation.

As an attempt to describe the process of air entrainment, this paper is certainly
incomplete. In the first place, we ignore the process by which the film is formed.
Secondly, the thickness of the film enters as an adjustable parameter in our analysis.
Conceivably, an understanding of the mechanism of formation of the film would also
predict this quantity. Thirdly, viscous effects are very incompletely accounted for,
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F1cURE 1. Water jet falling into a pool of water at rest. The camera looks at the free surface slightly
from below. A short film of air envelops the jet around its entry point into the receiving liquid,
clearly visible at the top of the figure. The diameter of the jet is slightly less than 1 em and its
velocity about 0.7 m/s. (Courtesy of Professor J. Duncan.)
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Ficure 2. Flow configuration assumed for the air film model. A plane film of thickness 2d separates
two half-spaces occupied by a liquid. The liquid to the left of the film is in uniform downward
motion with velocity W,. On the other side the liquid is at rest. Gravity is directed downward. The
viscosity of the liquid is neglected.

and nonlinear effects are not included. In spite of these shortcomings, the following
analysis appears to be a necessary step towards an understanding of the process.

2, The unperturbed state

The unperturbed state we consider consists of a thin, plane air film separating two
half-spaces occupied by a liquid (figure 2). Gravity is acting downward in a direction
parallel to the undisturbed film surfaces. The liquid to the left of the film has an
undisturbed uniform downward velocity of modulus W,, while the liquid to its right
is quiescent in the unperturbed state. This stipulation defines our frame of reference,
which is appropriate for the case of a large-diameter jet plunging in a liquid or of
skirt formation around a large-diameter bubble. In these examples curvature effects
due to axial symmetry can be disregarded in view of the thinness of the film. The
parameter expressing the acceleration of gravity may be adjusted to incorporate the
effect of pressure gradients of a different origin in the direction parallel to the film.

Since the air film is very thin and its Reynolds number relatively small, we take
the air to be an incompressible, viscous fluid. The viscosity of the liquid will,
however, be ignored. This approximation is rendered necessary by the fact that the
system is taken of infinite extent in the vertical direction and with no boundaries in
the horizontal one. As far as the liquid is concerned, the effect of this viscous
boundary layer is to distort the velocity distribution from the uniform value W,
which is assumed in the model, to a non-uniform one. If W, is the vertical velocity at
the interface, we can estimate its deviation from W, by balancing the tangential
stresses at the interface,

W-w, W
by Yty (1)
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where s, and z, denote the liquid and air viscosities, 2d is the thickness of the air film,
and d, is the thickness of the viscous boundary layer in the liquid. From this relation

we find
W Ha O, s O,
1422 ~1-22 2

W/ ( +/‘/2d) ﬂ/2d )

If we use the estimate &, ~ (zv,/W,)? for the thickness of the viscous boundary layer
at a depth z in a liquid with kinematic viscosity v,, we find, for a 1 m/s water jet at
a depth of 1 cm below the free surface, §, & 100 pm, which is comparable with the
thickness of the air film. Since g, <€ y,, the viscous correction to the liquid velocity
profile is thus seen to be very small and therefore the consequences of our
approximation should be minor. Further comments on this point will be given in the
last section.

The neglect of the liquid viscosity forces us to drop some of the interface
conditions. Continuity of normal stresses and velocities across the interface can be
imposed on both the liquid and gas sides. No other conditions can be imposed on the
liquid side, while on the gas side we can in principle use continuity of tangential
velocity or of tangential stresses. The previous argument shows that the latter
alternative would be incompatible with the neglect of viscous effects in the liquid,
and therefore we shall impose continuity of the tangential velocity. These boundary
conditions are used on both the unperturbed and the perturbed states.

It is readily verified that the velocity distribution

—d
U)=Wx)e, = [ p;ﬂ:)a glx®—d?)+ I'V/ 24 :|e3» 3)
for the air flow in the film satisfies the conditions W(—d) = —W,, W(d) = 0. Here e,
is the unit vector in the direction of the z-axis, which is taken vertically upward. The
z-axis points toward the body of liquid at rest, with the origin in the centre of the
film (figure 2). Furthermore, p, and p, denote the liquid and the air densities and ¢
is the acceleration due to gravity. The pressure distribution in the film is given by

P =F,—p,gz, (4)

where F, is the pressure at z = 0. The pressure gradient in the gas given by this
equation is constant and is therefore able to balance the hydrostatic pressure in the
liquid. The base flow (3) is given by the superposition of a Poiseuille component,
which is sustained by the pressure gradient due to gravity, and of a Couette
component, which satisfies continuity of velocity at the air-liquid interfaces. The
total transport of air in the film is

j W (2/)( Pa 2—“’,)d (5)

This model for the unperturbed state has been used by Guthrie & Bradshaw (1969)
in their study of bubble skirts.

The film thickness appears as a free parameter in this base state. In the stability
analysis that follows, we shall present results for different values of this quantity.
However, it may be noted that two special values exist, one corresponding to no
stress being exerted on the right-hand liquid surface, and one corresponding to no
mass being transported in the film. These two values are d = d, = [, W,/2(p,—p,) g1t
and d = d, = 1/3d, respectively. When d < d, the air flows downward only. When
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d, < d < d,, a region of upward flow is also present, but the net volume flow is still
downward. Finally, for d, < d, there is a net volume flow upward, a situation of no
interest for the study of air entrainment. For water and air at 20°C, g, =
181x10*gem s, p, =1.205x103gem™3, p, =0.998 g cm 3, and, with W, =
100 em s 1, we find for d, and d, the values 30.4 pm and 52.5 um, respectively. This
order of magnitude is in good agreement with the measurements of Guthrie &
Bradshaw (1969).

3. Linear stability analysis: governing equations

It is convenient to pass to dimensionless quantities and for this purpose we choose
d, W,p,d*/p,, and u, W,/d, as characteristic length, velocity, time and pressure,
respectively. The choice of the last two scales is dictated by the importance of
viscosity for the dynamics of the film; indeed, the Reynolds number of the air flow,

_paWid
Mo

Re (6)

has values of order one (e.g. for W, =1 ms™ and d = 30 um, Re = 1.99). The base
velocity profile rewritten in dimensionless form is

W=—a(@*—1)+ix—1), (7)

where the parameter a. which may be regarded as a measure of the relative
importance of the Poiseuille to the Couectte components of the base flow, is given by

Pe—Pa
= = d?l 8
AR (8)

The special values & =} and a =3 correspond to zero stress at the right-hand
interface and to zero net mass transport in the film, respectively. Two other non-
dimensional parameters enter the problem: the density ratio

e="Le 9)

P

which equals 1.207 x 1072 for air-water at 20 °C; and the capillary number

Ca =" (10)
o
This quantity is a measure of the ratio of viseous to capillary effects. Typical values
are of the order of 1073, For example, again for water—air at 20 °C, with W, = 1 m/s,
Ca = 2.5x10% From now on all quantities will be dimensionless, but no special
notation will be used. '
Recently Hesla, Pranckh & Preziosi (1986) have extended Squire’s theorem on the
stability of parallel flows to the case of more than one layer of immiscible fluids. This
result would be directly applicable to the problem investigated here only if the
viscosity of the liquid had been retained. However, insofar as the present model is
intended as an approximation to the fully viscous situation, we feel justified in
considering only two-dimensional disturbances.
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Indices £ and r will be used to denote the regions occupied by the liquid to the left
and to the right of the air film, # < —1 and z > 1, respectively. The perturbed
interfaces are described by the equations

S, (x,z,t) =2—[Fl1+7, (2] =0. (11)
The continuity equation,
V-u,,=0, (12)
and the momentum equations,
ou, u,
E—Rea = eVp,, (13)
ou,
= 1
5 eVp,, (14)

are the linearized disturbance equations in the liquid. In the air, we have the
continuity equation V-u = 0 and the momentum equation,

Ju ou dW .
hutad = kAl =— . 1
3 +Re(Waz+u e e3> Vp+Viu (15)

By imposing continuity of velocities at the air-liquid interfaces it follows that

u, (F1,2,8) = u(F1,2,¢), (16)
— _ dw _
w,‘r(+1,z,t)=w(+1,z,t)+a(+1)17,’r(z,t). (17)

From the continuity of normal stresses we obtain

_ _ _ ou  _ dw _ g, — 1O
p,'r(+1,z,t)—p(+1,z,t) ——2[a(+l,z,t)— 1z (F1) 22 (z,)|FCa Fre (z,1),
(18)
and from the kinematic conditions
on, _ _ 9’&
o (2,t) = Re [u( 1,2,t)+ 3% (2,81, (19)
o7,
—(2,t) = Rewu(l,z,t). (20)

ot

Finally, as |x| tends to infinity, we require the disturbances to vanish.
Since the problem is clearly linear and homogeneous and the differential equations
have coefficients independent of z and ¢ we can look for solutions of the form

u(x,z,t) = d(x)e®ikz (21)

and similarly for w, p and 7, ,. The introduction of the normal modes allows us to
solve the problem in the two regions occupied by the liquid in terms of film
quantities. Simple manipulations lead to the following equations for 4, .:

d;,r—kzﬁl,r =0, (22)
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where the prime denotes differentiation with respect to x. By imposing that the
amplitudes vanish at infinity, we find

A

dl.r = A/,reih:’ w{,r = iid/,r’ (23)
for the velocity fields and

. s—iRek , " s p
pr==—g Y Pe= gl (24)

for the pressure fields. The integration constants 4, . are to be determined by
matching the velocity profiles in the liquid and in the air.

It is now possible to derive a closed system of equations and boundary conditions
for the amplitudes of the normal modes in the air film. Upon introduction of the
normal modes in the continuity and momentum equations one obtains

' +ikw = 0, (25)
W' —(s+iWRek+k*d =79, (26)
W' —(s+iWRek+k*) io—Re W 4 = ikp. (27)
The boundary conditions (16) become
d, (F1) =a(F1). (28)

Together with (23) and (24), these enable us to rewrite (17)—(20) as

W(F1) =2ii(F)-W(F 1)1, (29)

, § " — . 194
p(—1) = —Ju(—l)+2[u (=) —iW (-1 ky,]—Cark*q,, (30)
B(L) = () + 200 (1) =W (1) ki) + Ca k24, (31)
Red(—1) = &, (32)
Redi(1) = s4,, (33)

where we have defined

§=s—iRek. (34)

The same problem can also be phrased in terms of ¥, the stream function of the
disturbance velocity, which leads to a form useful for numerical work. If we let

Y(z, 2, t) = Yr(x) ez, (35)

then @ =ik, b=—y", (36)
and (27) gives

P =%[zﬁ’”—(s+iWRek+k2)zﬁ’+iW’Rekzﬁ]. (37)

Upon substitution of (35) and (36) into (26), we obtain the Orr—Sommerfeld equation
Y —(s+iW Rek+2k%) )" + [iW” Re k+ (s+iW Re k + k%) k2] = 0. (38)
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The appropriate boundary conditions are obtained from (29)—(31), by using (32)
and (33), and are . .
S (—1) = k[3+iW'(— 1) Re] Y (—1), 39

(39)

sy’(1) = —k{s—iW’(1) Re] (1), (40)

§P7(—1) = K{(1—€e 1) @+ 3k2%—[Cat k—iW'(— 1) Re ki (—1), (41)
sP(1) = —k{(1—€') 82+ 3k2s— [Ca~ b+ iW’(1)] Re k2 (1) (42)

Once the problem for zﬁ has been solved, the amplitude of the surface displacements
can be calculated from (32) and (33) which, in terms of i, are

57, = iRekii(—1), si, = iRekj(1). (43)

4. Long-wave asymptotics

The perturbation problem formulated in the previous section cannot be solved
analytically in closed form. Before carrying out a numerical integration, it is useful
to study the asymptotic behaviour of the dispersion relation s = s(k) in the limits of
wavelengths large and small compared with the thickness of the air film. These
results enable us to identify and classify the eigenvalues of the system and to gain
some insight into the physical mechanisms of the instability. Moreover, the
approximate results for long wavelengths have been used as initial guesses for the
iterative process upon which the numerical method of solution is based. Here we
discuss the long-wavelength limit. The next section is devoted to the analysis of the
short-wavelength case.

The details of the asymptotic analysis for £— 0 are rather straightforward and can
be found in the Appendix. Here we describe some results and note that the
calculations are considerably simplified by dealing with (25)—(27) directly, rather
than by using the stream-function formulation. If the latter course were taken, the
determination of s to the leading order would require the solution of the problem for
¥ to the second order.

Upon writing

s(k) = sy+s, k+s, k2 +..., (44)

we find in the Appendix that s, can either vanish or take the infinity of values
sm=—1p2n? n=1,2... (45)

These higher modes are heavily damped and are not expected to lead to an unstable
behaviour. They will be briefly considered later. For the present purposes the most
interesting modes are those for which s, vanishes. To study this case in more detail
we let

s=lk(sy+ks +...), (46)
and find three different solutions,
1 ae):
(+) —=2|; -thaad 2
s 2[11—(1 81Re)]Rek+0(k )s (47)

. Re e+i2a Re
§@ = i(3—20) Rek+ (1—162%) [%+ (1+16a?) Re—iSae

]Re E+O0®k). (48)

The mode s is evidently unstable and it is easy to see that it is associated to an
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instability of the Kelvin-Helmholtz type, as expected. Indeed, the standard result
for the growth rate of this instability (Lamb 1932; Chandrasekhar 1961) is, in our

dimensionless units,
1 € d
() — —[; - ,
K =5 [1 + (1 4Re Ca k) ].Re k, (49)

and therefore, to leading order in k, coincides with (47) up to the small correction
8ae/Re which is due to the effect of the buoyancy of the film. This interpretation is
strengthened by the fact that the displacements of the left- and right-hand interfaces
are equal, to the leading order in k, so that the air film behaves approximately as a
single surface of discontinuity, although with a complicated internal structure. Note
that, in (49), the surface tension contribution of the standard Kelvin-Helmholtz
result has been multiplied by two to properly account for the two interfaces
bounding the air film.

If, in the study of the stability characteristics of a parallel shear flow, a rigid
boundary is replaced with a free surface or an interface, two new surface modes
appear in addition to the shear modes that were present in the original flow. In
general the surface modes are waves travelling in opposite directions and they are
less stable than the shear modes. In the configuration that we are considering here
there are two interfaces, and hence four surface modes. As will be clearer from a
consideration of the short-wavelength limit, two of them are s+’ while the other two
are s and s™. It may be noted that a mode similar to the root s is found in the
study of the stability of a film flowing down an inclined plane (Benjamin 1957 ; Yih
1963 ; Smith 1990). In that case, as in the present one, the real part of the eigenvalue
is of order k%, and can be positive or negative depending on the inclination of the
plane and the Reynolds number. Here the sign of the real part of s depends on the
parameter a, being positive for & > }. An eigenvalue similar to sV is also found in the
problem studied by Yih (1963), after the correction of what appears to be an
algebraic crror.t It may be concluded that the modes corresponding to s and sV
are characteristic of the stability of parallel flows with free boundaries.

The modes (45) with n greater than 1 are shear modes, closely related to those in
the spectrum of parallel flows between solid boundaries. We refer to Birikh, Gershuni
& Zhukhovitskii (1966) for a study of the cigenvalues and the eigenfunctions of such
flows in the long-wavelength limit at low Reynolds numbers. To the leading order in
k, perturbations for which the stream function is altcrnatively cven and odd are
found. The eigenvalues associated with the even eigenfunctions are given by (45)
withn = 2,4, 6,.... They coincide with those of our system because to this order in
k the free-surface displacements vanish when » is even (see the Appendix). The
eigenvalues associated with the odd eigenfunctions are determined by

(—S)cot(—S)= 1. (50)

The first few solutions of this equation are 8% = —20.191, S® = —59.680, S® =-
—118.90.... They are somewhat smaller in modulus than the corresponding
eigenvalues of our system, s = —22.207, s = —61.685, s{’ = —120.90..., but the

1 In section VIII, where he compares the spectrum of a plane Poiseuille flow with the one of a
flow down an inclined plane, he considers the long-wave limit for the free-surface flow. Imposing
the boundary condition f2¢’(0)—¢”(0) =0 on ¢ = A + By+ (e + De #_ he erroneously deduces
B = —4pD instead of B =0. The correct eigencondition is cosh g =0, the roots of which are
Br=—4nn)® n=1.3,5,.... Since % is the growth rate, the first of these eigenvalues coincides
with s{b.
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Ficure 3. Flow configurations for the viscous instability model. The left half-space is occupied by
an inviscid liquid at rest. The viscous fluid to the right of the interface is in linear shearing motion
with shear rate W’. (¢) Unbounded case; (b) bounded case: a vertical wall is placed at a distance
2d from the interface.

difference S™ 2 —s{™ tends to zero as n —~o0. This difference may be explained by
observing that, as shown in the Appendix, when » is odd the displacements of the two
interfaces are opposite. This circumstance causes a longitudinal flow in the film with
a viscous dissipation larger than in the case of rigid boundaries. Since the interface
displacement is proportional to n~® while the velocity disturbance is proportional to
n!, as n increases, this difference tends to disappear and (50) becomes a closer and
closer approximation to the eigenvalues of the present problem.

5. Viscous instability

At wavelengths very short compared with the film thickness, one expects the
disturbances to affect only a thin region around each interface. In this wavclength
range the two interfaces should become essentially uncoupled and each one of them
should behave very similarly to the interface of a model configuration in which a
single free surface separates a viscous from an inviscid fluid. The spectrum of the
complete problem is therefore expected to reduce to the combination of two such
spectra. These considerations lead us to the study of the stability of a two-
dimensional shear flow with an interface across which viscosity is discontinuous.
Since the results of the treatment of this problem given by Hooper & Boyd (1983)
cannot be readily adapted to the case of present concern in which one of the two
fluids is inviscid, we develop here the analysis ab initio.

Consider a half-space occupied by an inviscid fluid of density p,, moving with
uniform velocity U, = W;e,. The other half-space contains a second fluid of density
p, and viscosity u,. Its unperturbed velocity distribution is U, = (W, + W'x) e, (figure
3a). Since the condition of continuity of the tangential stresses cannot be imposed at
a viscous—inviscid interface, here the shear rate W’ is an independent parameter of
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the problem. It is in this feature that the present situation differs from that studied
by Hooper & Boyd, for which the shear rate was dictated by the continuity of
tangential stresses.

In addition to the previous configuration, we shall also study the case in which the
viscous fluid has a finite thickness 2d and is bounded by a rigid wall. In order to
maintain the linear velocity distribution in the film, the wall has an upward
(dimensional) velocity given by W,+2W’d (figure 3b). In this analysis, we have been
motivated by the following considerations. If the wavelength is very large, since the
air film is taken to be incompressible, both interfaces must undergo non-zero
displacements. At moderate or short wavelengths, however, in view of the very large
density difference between the two fluids, one expects the high inertia of the liquid
to strongly limit the participation of one interface to a perturbation mode
corresponding to the other one. Thus, the substitution of the ‘ passive’ interface with
a solid boundary should change but little the system’s response. Indeed, it will be
seen that endowing the viscous fluid with a finite extent greatly extends the degree
to which this simpler model simulates the complete problem of concern in the present
paper.

It is readily shown that the only effect of the velocity W, is to add the purely
imaginary term iW,k to the eigenvalues. We shall therefore assume W, = 0 in the
following, which is equivalent to performing a Galilean transformation. Furthermore,
on the basis of symmetry considerations, one expects the real part of the growth rate
s not to depend on the sign of W’. Indeed, it can be proven that the complex
conjugate of any eigenvalue corresponding to a shear rate W is an eigenvalue of the
reversed-flow configuration with the shear rate — W’. This fact permits us to consider
only positive values of W'.

Intrinsic scales for the model problem are the lengthscale (u,/p, W'}, the velocity
scale (u, W’/p,)* and the timescale W=, In addition, for the bounded configuration,
there are a characteristic length d, velocity W’d, and time p, d?/u,. The former set of
units is the most natural one. The dimensionless formulation of the unbounded
problem that follows from this choice depends only on one parameter related to the
surface tension, whereas the bounded problem depends also on the dimensionless
distance of the wall from the interface. When this distance tends to infinity, one
recovers the unbounded case as a limit of the bounded one. The study of the stability
characteristics of the interface as a function of the surface tension and distance of the
wall for a fixed shear rate at the interface is, thus, quite straightforward. In order to
explain the stability characteristics of the air film, however, we are more interested
in the dependence of the growth rate on the interfacial shear rate for a given surface
tension and a given thickness of the region occupied by the viscous fluid. In view of
this objective, it is more convenient to use the second set of units. It is then found
that both the finite and infinite problems are governed by two parameters, a
Reynolds number
_p W

v >

Ha

Re

which may be interpreted as a measure of the magnitude of the shear rate, and the
parameter
od
rv = pa?’

a

which is the ratio of the Reynolds number Re, to the capillary number Ca, =



The stability of an air film in a liqguid flow 331

4. W' d/o. Dimensionless quantities will be used henceforth, although no special
notation will be used.

As for the original problem, we introduce a stream function ¥ to describe the flow
in the viscous fluid. The complex amplitude z,// of any normal mode satisfies the
Orr—Sommerfeld equation which, upon scaling and substitution of the unperturbed
velocity profile, may be written as

d2 d2 - . a
(@_lﬁ)[(@—]ﬁ)g{f—(s+1Revkx) t/f] =0. (51)

At the interface the same boundary conditions as at the left surface of the film apply.
Making the change of variable x>z +1, from (39) and (41) we obtain

si7'(0) = k[s+iRe,]9/(0), (52)
sy (0) = k[(1—e7Y) 82+ Bk2s+iRe, k*— I', k*]3//(0). (53)
The other two boundary conditions (40) and (42) are replaced by imposing that the

disturbances tend to zero as x tends to oo in the unbounded case, whereas in the finite
case the disturbance velocity must vanish at the wall, that is

¥(2) =0, (54)
¥'(2)=0. (55)

The derivation of the eigencondition follows the same steps as in the cases treated
by Hooper & Boyd; however, the algebra is much simpler. The solutions of (51) are
expressed in terms of the Airy functions of complex arguments

4. (Re, kx— (s+k)w) L
A,(x)_Al( e =12 (56)

where 6, = in and 6, = in. In the unbounded case the disturbances vanish at infinity.
This condition restricts the set of acceptable solutions to the form

z

@) = e—"z—;—;{e-’”f &7 4, (y) dy + et f
0

x

e 4,(y) dy}, (87)

where ¢, and ¢, are integration constants. By imposing the boundary conditions (52)
and (53), the following linear system of equations in c,, ¢, is obtained:

4k?sc, +iRe (2k*c,—Jc,) =0
[(1 —e Yy s®+4k?s+iRe, k:—T k%] (2k%c,—J ¢c,) —2kA4(0) sc, = 0.

For the system to possess non-trivial solutions the determinant must vanish, which
leads to the dispersion relation

[(1—e1)s2+2k?s— I, k*]J + (25 +i Re,) kA (0) = 0, (58)

where J= kf e ¥ 4, (y)dy. (69)

0

For the bounded configuration, we impose conditions (54) and (55) on the general
solution of (51), obtaining

Jl@) = Cafsinh [e(y —2)1 4,(y) dy+04f sinh [k(y —x)] 4,(y) dy, (60)

z z
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Fiaurg 4. Effect of surface tension on the viscous instability. Dimensionless growth rate Re(s)
vs. the dimensionless wavenumber k for Re, = 2. No surface tension, I', = 0: , bounded
configuration; -—-—- , unbounded configuration. I', = 1000: ———, bounded configuration; --- - s
unbounded configuration.

where ¢; and ¢, are integration constants. Upon substitution into the interface
conditions (52) and (53), we find a linear system in these quantities:

(s+iRe,)(Jg c3+Jsy€q) +8(JpyC3+Jpp0q) = 0,
[(1—et)s®+3k¥s+iRe k> — I, k*) (Jg, c3+ Jgs€4)

+ k25(Jpy c3+ Jeg €4) — 8| A7(0) ¢+ A5(0) cy] = 0,
where

gy = [ sinh i) 4,0, 1)

0
2

Jes = [ cosh k) 4,0y, %)
0

with j.= 1, 2. This system has non-trivial solutions if and only if
[(1—e) s+ 2k% = I’ k*1(Jsp Joy — 1 Jcn)
+8[A1(0)(Ssy +Jeo) — AYO0) sy +Jc) )]+ i Re, [A;(0) S5, —A5(0) S5, ] = 0, (63)

which is the dispersion relation for the bounded case.

For the purpose of shedding light on the stability of the air film we are interested
only in the first modes of these model problems, which are associated with the motion
of the free surface. To obtain the results which follow, the dispersion relations have
been solved numerically by means of the Newton-Raphson proccdure. For the
evaluation of the Airy functions and their derivatives, use has been made of the
algorithm developed by Schulten, Anderson & Gordon (1979).

Figure 4 shows the growth rate Re (s) of the unstable mode versus the wavenumber
for the cases ¢ = 1.207 x 1073, Re, =2, I, = 0 and 1000 both for the bounded and
unbounded configurations. When surface tension is neglected (I°, = 0, continuous
and dash-and-dot lines), the interface is unstable for all wavelengths, with the
growth rate a monotonic increasing function of the wavenumber. The rigid boundary
(continuous line) has a substantial stabilizing effect on long-wavelength disturbances,
but acts as a destabilizing factor in the region 0.01 < k < 1, approximately. This fact
will be seen in the next section to play a major role in the air film instability studied
in the present paper. The dashed and the dotted lines are for I', = 1000, for bounded
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Ficure 5. Dimensionless growth rate Re(s) vs. the dimensionless wavenumber k for the two surface
modes of the viscous instability for I', = 1000, Re, = 0, 0.5, 1.0, 1.5, 2.0. (2) Bounded configuration;
(b) unbounded configuration. , Unstable modes; -+ - - , stable modes. For Re, = 0 (-—-—-) the
real parts of the two modes coincide. Unstable modes become more unstable with increasing Re,,
and conversely for the stable modes.

and unbounded regions, respectively. As expected, surface tension stabilizes short
wavelengths. Of greater significance, however, is that the effect of surface tension
begins to be important precisely for wavenumbers & ~ 0.01. Therefore the maximum
for the bounded case (dashed line) is larger than that for the unbounded case (dotted
line). This feature is present over the entire range 100 < I', < 10* that we have
explored.

There is an intrinsic viscous lengthscale of the perturbation problem which appears
in the argument of the Airy functions,

l_(2n
" \Re k)

In the example of figure 4, this quantity becomes of order one for & ~ 1. Predictably,
for wavelengths in this range or shorter, the bounded and unbounded results are
close.

In the next figure we show the effect of Re, on the growth rate of the first
(continuous lines) and second (dotted lines) mode, again for I", = 1000. Figure 5 (a)
is for the bounded case and figure 5(b) is for the unbounded case. The maximum is
in all cases more pronounced for the bounded configuration and increases with the
Reynolds number Re,. The sccond mode is instead stabilized by an increase in the
Reynolds number. For large k the growth rates for the bounded and unbounded cases

el
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Ficure 6. Dimensionless growth rate Re(s) vs. dimensionless wavenumber k for the four surface
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tend to coincide, and decrease proportionally to 4*, which seems to be at variance
with a statement of Hinch’s (1984).

6. Results

We now return to the complete problem posed in §3 and discuss several examples
on the basis of the models of the previous two sections. The numerical results to be
described have been obtained from the stream-function formulation (38)—(42) by
means of a standard shooting technique (see e.g. Keller 1968 ; Drazin & Reid 1981).

The present problem is characterized by three dimensionless parameters, the
Reynolds number, the capillary number, and a. Within the context of the model
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FIGURE 7. As in figure 6, with Re = 10, Ca = 1072,

assumed in this study, for a given gas-liquid combination, only the entrainment
velocity W, and film thickness 2d can be prescribed arbitrarily. Furthermore, as has
already been remarked, it is very likely that a relation exists between these two
quantities in the actual physical process, so that in an experiment only the
entrainment velocity could be selected arbitrarily. However, in view of the
incomplete understanding of the process that we have at present, we shall discuss our
results treating Re, Ca, and a as independent quantities. In this way, a better insight
into the mechanisms underlying the instability can be gained.

Figures 6-8 show the growth rate, Re (s), of the four surface modes s'*) (continuous
line), s (dash-and-dot line), s (dotted line), and s (dashed line) for several
different combinations of the parameters Re, Ca, and o chosen so as to span a region
of physical interest in parameter space. For some of these cases, figure 9 shows the



336 A. M. Lezzi and A. Prosperetti

0.02 ——— T
(a)

—0.02 -

Re(s)
—0.04 |-

—0.06 |-

—0.08 Ll bl
0.001 0.01 0.1 1 10

0.02 e
()

T
~
~

—0.02

Re(s)
—0.04

—0.06

0.001 0.01 0.1 1 10

0.02 e
()

T
R

—0.02 f
Re(s) ’

—0.04

—0.06

T

—0,08 L1 ' ol
0.001 0.01 0.1 1 10

Wavenumber
FiGURE 8. As in figure 6, with Re =1, Ca = 107,

phase velocity —Im (s)/k, which is however of lesser interest for the study of the
instability. Further results of this type can be found in Lezzi (1990). In the graphs
the wavenumber ranges between 107® and 10. The density ratio e is held fixed, equal
to 1.207 x 1073, which is the appropriate value for air-water at 20 °C. For the
parameter a, which may be viewed as a dimensionless imposed pressure gradient
opposing the entrainment process, we consider the values §, corresponding to zero net
mass transport in the film, i, corresponding to the film thickness d, for which no
stress is exerted on the right-hand liquid surface, and 4, corresponding to a film
thickness equal to id,. For the air-water case at 20 °C, when W, ranges between 0.1
and 2 m s7!, the Reynolds number varies between 0.06 and 5.7 for « =1, while Ca
increases from 2.5 x 1078 to 5 x 10~4. Therefore, we consider the values 1071, 1, and 10
for the Reynolds number and the values 107* and 107° for the capillary number.
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F1curE 9. Dimensionless phase velocity »s. dimensionless wavenumber k for the four surface
modes of the air film problem for the cases of figure 6.

The growth rate exhibits a striking variety of behaviours and a clear sensitivity to
the parameters o and EKe. For all values of a and Cu, an increase in the Reynolds
number greatly enhances the instability. For the least-stable mode s, for given Re
and Ca, an increase in « is destabilizing, while, for all modes, a decrease in Ca has a
stabilizing influence. Since the instability is driven by the downward-moving liquid
on the left of the film, and is inhibited by viscosity (all the more effective the thinner
the film) and surface tension, qualitatively these trends are as expected. For a fuller
understanding of the results, however, it is useful to compare them with those of the
preceding two sections.

For the purposes of the following discussion, it is convenient to divide the range
of wavenumbers in three different regions. We consider a long-wavelength region,
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where k < 1072, corresponding to wavelengths at least two orders of magnitude
longer than the film thickness. Here, the Kelvin-Helmholtz instability plays an
important role. Wavelengths of order of the film thickness or smaller form another
region corresponding to the wavenumber range 1 < k. Here, the viscous instability
mechanism for unbounded fluids is important. In the intermediate interval of
wavenumbers, which is the most important since it is here that the eigenvalues attain
their maximum in most cases, the dominant physical process seems to be the viscous
instability as modified by the presence of a boundary.

6.1. Kelvin—Helmbholtz instability

From the asymptotic analysis of §4, it is known that the modes s‘*) tend toward the
two modes of the Kelvin—-Helmholtz instability at long wavelengths. Although we
expected the Kelvin—-Helmholtz model to be a good approximation for the film down
to wavelengths about an order of magnitude longer than the film thickness, the
numerical solutions show that its domain of validity is substantially smaller.
Equation (49) is found to approximate the curves s*) within 10% in the long-
wavelength region previously defined, i.e. for k < 1072

The two eigenvalues si&} given by (49) are purely imaginary for k greater than a
critical wavenumber k, given by iRe Ca/e, whereas the absolute value of the real
part attains its maximum at k, =2k, Furthermore, the Kelvin—-Helmholtz
eigenvalues do no depend on the parameter a.

Figure 10(a—) shows a detailed comparison between the numerical results s‘*’
(continuous lines) and the long-wavelength approximation (dashed lines). In figure
10(a), the value of ReCa, 1073, is such that the critical wavenumber for the
Kelvin—Helmholtz instability, &, lies in the long-wavelength region. It is seen that
in this case one can use ky to obtain a reliable estimate of the wavenumber of one
of the relative maxima of the growth rate for s, In general, however, as in this
example, this value does not necessarily coincide with the most unstable wavelength.

For the cases of figure 10(b and ¢), for which ReCa = 107® and 1072, the critical
wavenumber for the Kelvin—-Helmholtz instability has moved to the intermediate-
and short-wavelength regions, respectively. In these cases it is seen that the
Kelvin-Helmholtz model looses its validity at wavenumbers much smaller than k&,
and becomes useless, except for one interesting vestige. When £k, falls in the
intermediate region (figure 10b), two local small, but sharp dips interrupt the
smoothness of s and s, These structures occur near the value of k., where the real
part of s{&} rapidly vanishes. Other than this, it is apparent that the behaviour of the
curves s'*) is determined by mechanisms quite different from the velocity jump
across the film.

6.2. Viscous instability

As discussed in §5, the viscous instability arises from a viscosity discontinuity and
is controlled by the shear rate in the viscous fluid. In the present problem there are
two such discontinuities, and therefore we shall compare the results of the complete
model with two sets of results for the viscous instability. In this comparison, care
must be exerted because of the different velocity units used in the scalings of §§3 and
5. The correspondence that preserves the dimensional shear rate at the left-hand
interface is readily seen to be

Re, = W, Re,
144
where W;=(31—I:,(—1) = *’2 x (64)
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Ficure 10. Comparison of the growth rates for the modes s'¥’ as given by the complete model
(—) with the modes si&), equation (49), of the Kelvin—Helmholtz, long-wavelength app-
roximation (—-). (@) Re =0.1,0a = 10, a =%, k, = 2.07x 1073; (b) Re = 10, Ca = 10™*, & = %, [k,
=207x10"1; (¢c) Re=10, Ca=10", a =3, k, =2.07. k, is the wavenumber at which the
Kelvin—Helmholtz eigenvalues become purely imaginary. The maximum of s, occurs for k = k..

Similarly, for the right interface,

Re, = |W}| Re,
with W= Wy 14 (65)
dx 2

Here we use the modulus because W is negative for a < 1. This causes no difficulties
since, as pointed out in §5, the real part of the roots of (58) and (63) are invariant
under inversion of the flow direction.
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Figure 11. Comparison of the growth rates for the modes (a) s, s, and (b) s'¥, s as given by
the complete model ( ) with the corresponding modes of the short-wavelength approximations
for the bounded (——-) and unbounded (- - - - ) configurations. The dash-and-dot line indicates the
long-wavelength, Kelvin—-Helmholtz approximation si&), equation (49). Here Re = 0.1, Ca = 1073,

=3
a=jz.

In addition, to preserve the value of the dimensional surface tension coefficient o
in the film and in the model problems, the value of the parameter I, must be selected
according to the relation

r = Re

v_a'

In figures 11-13 we consider two representative cases in detail. In figures 11 and
12 the continuous lines show the results for the complete problem, while the dashed
lines and the dotted lines are the results for the viscous bounded and unbounded
models, respectively. Figures 11(a) and 12(a) show the growth rates for the modes
s and s associated with the left-hand interface, while figures 11 (b) and 12 (b) are
for the modes s and s corresponding to the right interface. It can be seen in
figures 11(a) and 12(a) that the first two modes for Re, = W,Re give a good
approximation to the roots s and s‘¥’ of the complete problem, while, from figures
11(b) and 12(b), those corresponding to Re, = |W;| Re are close to the roots s and
8. For the viscous stratification model with an unbounded viscous fluid, it is found
that the approximation is accurate only for short wavelengths. However, for a
configuration with a finite layer of viscous fluid having a thickness equal to that of
the air film and bounded by a rigid wall, the agreement extends to the intermediate-
wavelength region as well. The physical explanation for this result was given in §5
and hinges on the very small density of the air with respect to the liquid. To check
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FIcURE 12. As in figure 11, with Re = 10, Ca = 1073, a = £;.

this explanation, we have studied a few cases corresponding to equal densities,
€ = 1. As expected, agreement between the results for the viscosity-stratification
model and the complete problem then disappears.

As the parameter a varies between 0 and 2, the shear rates W, and W] range
between 1 and 2, and —1and 1, respectively. For any value of a, Re, = W, Re is larger
than Re, = |W]| Re. Since, as was pointed out in §5, the higher Re, the larger the
growth rate, the mode s associated with the left-hand interface is always less stable
than the mode s corresponding to the right-hand interface.

The phase velocity for the modes s{%} is opposite to that induced by the viscous
stratification mechanism. A further illustration of the limited validity of the
Kelvin—Helmholtz mechanism and of the dominant role played by the viscosity
stratification can therefore be obtained from a consideration of the phase velocities
of the interfacial waves. Figure 13 (a, b) shows these velocities for the modes s and
s for the two cases of figures 11 and 12. A similar transition between the two
controlling mechanisms can be easily discerned in many of the examples of figure 9.

7. Summary and conclusions

Our analysis shows that only the two modes s and s have an unstable range
of wavelengths. The s mode is always the less stable of the two. For this mode, the
instability is controlled to varying degrees by the Kelvin—-Helmholtz mechanism and
by the viscosity stratification. Only the latter mechanism seems to play a role for the
other unstable mode.
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Figure 13. Phase velocities of the modes s'*, sV for the cases of (@) figure 11, and (b) figure 12. ,
Air film results; -—-—., Kelvin—Helmholtz mode s{),; ———, viscosity stratification model, bounded
configuration; -+ - , viscosity stratification model, unbounded configuration.

When the critical value k, for the Kelvin—Helmholtz instability falls in the long-
wavelength region k < 1072, the real part of s has two separate maxima. The first
one peaks at around the most unstable wavelength for the Kelvin—Helmholtz
instability. The second one is found for intermediate wavelengths and is due to the
viscosity stratification. It is almost negligible for small values of the dimensionless
pressure gradient a but, as a increases, it becomes of comparable magnitude and then
larger than the first maximum.

When, by changing the product Re Ca, k, is shifted to intermediate wavelengths,
the mode s'* tries to ‘interpolate’ between the two mechanisms (see figures 11a and
12 @), until the two maxima merge with a resulting peak somewhere between k& ~ 0.01
and k ~ 0.1. This maximum is substantially smaller than that predicted by the
Kelvin-Helmholtz theory for the same parameter values.

Also the real part of the mode s displays a broad maximum in the same range
of wavenumbers except when a is close to ;. This value corresponds to zero shear rate
at the right interface, for which the viscous mechanism is shut off. The maximum
becomes more and more pronounced as |W| (defined in (65)) increases, but it never
grows larger than the maximum of the other mode. For those combinations of the
parameters for which s exhibits two maxima, the s peak lies between them. In
these cases the air film possesses three distinct preferred disturbances.

In addition to the air film problem, we have studied in §5 a situation in which the
viscous layer is in a state of linear shear flow and one of the boundaries is either
absent or substituted with a rigid, no-slip one. The results indicate that most of the
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important features of the complete air film problem are reproduced by these simpler
models owing to the large density difference between the air and the liquid.

We have also considered a variant of the air film problem in which the unperturbed
parabolic velocity profile (7) is retained, but one of the two interfaces is substituted
by a rigid, no-slip wall. Depending on which interface is replaced, either the pair s*,
sV or the peak s, s disappears, as expected. However, the results for the
remaining modes are only slightly affected, an indication of their relative
independence of the nature of the other boundary and the details of the unperturbed
velocity field. The controlling parameter seems to be the value of the shear at the
interface.

The picture that we have summarized corresponds to the case in which the fluid
in the film has a much smaller density than the other fluid, which is the situation of
interest in the air entrainment problem that has motivated the present investigation.
From a limited study of cases in which the two fluids have a comparable density, we
have found that the viscosity stratification model reproduces the complete. results
only in the limit of very short wavelengths, for which the two interfaces are
essentially uncoupled.

The results described in this paper show the importance of viscosity in the
dynamics of the model that we have studied. However, our account of viscous effects
has been incomplete insofar as the viscosity of the liquid has been neglected. 1t might
be objected, therefore, that the final status of our conclusions remains open to
question, if only on logical grounds. While we do not have a fully satisfactory answer
to this objection, we may make the following remarks. Essentially, one can expect
two type of effects from the viscosity of the liquid. The first one arises from the
presence of a non-zero shear rate in the liquid. Since, as is clear from (1), this shear
rate is smaller than that in the gas by a factor of the order of u,/u, < 1, one would
expect only minor consequences to arise from the neglect of this quantity. The
second effect is the damping of the instabilities that we have found. If one were to
estimate this effect by using the damping constant of gravity—capillary waves, 2v, k2,
one would find a negligible correction except for the lowest Reynolds number case
that we have considered, 0.1, where the maximum growth rate may be predicted to
decreasc by up to 50 %. The applicability of this estimate is however not obvious in
the present case in view of the presence of a non-zero stress applied to the liquid
surface by the air layer. In any event, it is found experimentally that the length of
the air film increases with the viscosity of the liquid (cf. e.g. figure 1 with figure 13
of Lin & Donnelly 1966). This finding seems to indicate that liquid viscosity will
dampen but not suppress the instability. In view of this result, the destabilizing
mechanisms that have been our primary concern in this study seem therefore to
remain relevant to the mechanics of the actual physical process.

As a final point we may apply the previous numerical results to the jet entry
example of figure 1. Sinee the film thickness is not available, we cannot go beyond
an estimate of orders of magnitude. The water jet velocity is approximately 0.7 m/s,
which gives Ca = 1.8 x 107*. With d = 30 pm, the Reynolds number (6) has the value
1.4 and the timescale used in the non-dimensionalization is p,d?/u, ~ 6x 107°s. A
typical order of magnitude of the dimensionless growth rates shown in figures 6 and
8 is 1072 With a jet velocity of 0.7 m/s, we thus predict a film length of the order of
0.4 cm, i.e. less than one jet diameter. This is in rough agreement with what is
observed in the photo.

The authors are grateful to Dr J. H. Duncan for permitting them to reproduce one
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laboratory breaking wave. Thanks are also due to Dr M. K. Smith for several helpful
discussions and to the referees for some suggestions. This study has been supported
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Appendix

We now give some details about the asymptotic analysis of §4. Let us first consider
the case lim,_,s % 0. If we consider the relative order of magnitude of the terms in
(25), we find that, in the limit k-0, kO(d) = O(4’). Therefore, if we expand @& as

W(x, k) = wy(x) +w, (@) k+w,(x) K2+ ..., (A1)
the appropriate expansion for 4 is
a(x, k) = u, + k[ug(x) +u, (2) k+...], (A2)

where «, is a constant. Next, consider the limit of (30) and (31) as k— 0. The right-
hand sides are asymptotic to F su./ek, which cannot be balanced by any term on the
left-hand sides. Hence u, = 0, i.e. & = O(k). Furthermore, from (32) and (33) we
deduce that, to leading order, 7, . are of order k at most. Accordingly, we set

o olk) = k(@ o+ ap o ot ...).
Substituting into (25) to (27) the previous cxpansions, together with
s(k) = sg+s, k+s, 5+ ...,
Bl k) = po(@) +py(@) k+po(@) K+ ..,

and collecting terms multiplied by the same power of k, we obtain at the zeroth order

uy+iw, = 0, (A 3)
P, =0, (A 4)
wy—8,wy = 0, (A 5)
with boundary conditions

wy(F1) =0, (A 6)

- S
Po(+1)=+f%(+1)7 (A7)
Reuy(F1) = s,a, 4o (A 8)

The general solution for w,,

w, = A,exp (s(%,x)+B0 exp ( —s‘l’,x), (A9)

satisfies the boundary conditions wy( F 1) = 0 if and only if sinh (28% = 0, from which
the spectrum given in (45) follows.
For n odd, the solution of (A 5) is

wi™ = A™ cos (jnmz), n=1,3,5,...,
while, for n even,
w® = A™gin (dnnx), n=2,4,6,....
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Once w, has been evaluated, u,, p,, a,9, and a,, are readily calculated. When = is
odd they are

24D
uf® = —i sin (3nm x),
(n)
(n) — innA (_ 1)n—1/2
0 26 3
(n)
al® = _qgn — iM(_I)n—l/Z
ro 70 nana s

whereas, for n even,

44™
uf® = —i - sin [inn(z+ 1)]sin [nn(x— 1)),
i =0,
a?,'x)-o =0.

When s vanishes as k£ - 0 we use the expansion (46). The same expansions (A 1) and
(A 2) with u, = 0 as before hold in this case also. Making use of these results in the
second of (26), we deduce that 5" = O(k) so that

D@, k) = p.+ k[po() + py () b+ ...],

with p, a constant which, from (30), is seen to vanish. After this preliminary analysis,
expand 7, and 7, as
ﬂ(,r(k) = a(,r0+a/,r1 k+al,r2 k2+ e

to find the zeroth-order approximation to our problem

ug+iwy, = 0, (A 10)
Uy = Pg, (A11)
wy =0, (A12)
together with
wo(F1)=—W'(F1)a, (A 13)
s,—1iRe , —
Po(—1) === - ug(— 1) +2[ug(— 1) —iW’'(—1)a,,), (A 14)
8 ’ . ’
Po(l) = £u0(1)+2[u0(1)—1W (1) agl, (A 15)
Reuy(—1) = (s,—iRe)a,, (A 16)
Reuy(1) = sya,,. (A 17)

The general solution of the system (A 10)—(A 12) is
Ug(x) = —i[AW(x)+ Bx]+C,
wy(x) = AW’ (x)+ B,
Po(x) = —idW'(z)+ D,
where A, B, C, and D are integration constants. By imposing the boundary
conditions, after some manipulation, we end up with the following linear system:
li(sy,—iRe)*—eRe W’(—1)] a g+ [isi+eRe W’(1)]a,, = O, (A 18)
—[sg—iRe W (1)]a,,+[sp—iRe W'(1)]a,, =0, (A 19)
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which has non-trivial solutions only if its determinant vanishes. This condition yields

the three roots
1]. 73 :
Sai) = EI:] i(l —81R—e) ]Re,

s = iReW’(1).
From (A 19), it is clear that when s, = s{*),a!$’ is equal to a{’. Then

A® = g B® =0,

(+) 8¢ +
) =22 gD

o _ |6 (+)
R M0 D) = +iW'(1) ja:’.

e€Re
If 5, = s{?, we define
. Re W' (1)+ie
O ReW'(—1)—ie
Then, from (A 17), it follows that

o _ W)

A Sl A (0)

Apy = W/(__l) 0 *ro >

147, ©

and AV =W W= ™

R WOHWI(=1)
W({)—W(—1) ™

B = W(1)

147, ©

(0)
¢ W= W=D

W

Re L+7
DW= —[W (1) —+i 2 o,
[ ( )] |:6 +1wl(1)_Wl(_1)]al‘0
Note that, for a = 1, W’(1) vanishes together with afy, 4, w(” and p{».
The first-order correction to s in (48),

Re e+12a Re
0) —16 2y 7
s = (1 a)[30+(1+16a2)Re—i8ae] ’

has been calculated by determining and solving the first-order problem for the
unknown s,, u,, w,, P, and @, ., for the case s, = s{¥. The calculations have been
carried out by using the algebraic manipulation package MAcsYMa, a trademark of
Symbolies, Inc.
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